Девятая ежегодная конференция Физика плазмы в Солнечной системе

10-14 февраля 2014, ИКИ РАН

Научные программы Президиума РАН №22 и ОФН РАН №15

Импульсные режимы электронно-циклотронной неустойчивости плазмы в открытой магнитной ловушке

М.Е. Викторов, С.В. Голубев, Д.А. Мансфельд, А.Г. Шалашов, Е.Д. Господчиков, И.В. Изотов

Институт прикладной физики РАН, Нижний Новгород

Примеры космических циклотронных мазеров

Плотная

 $\omega_{pe} > \omega_{ce}$

плазма

Разреженная плазма

$$\omega_{pe} < \omega_{ce}$$

Генерация электромагнитных волн во внутренней магнитосфере Земли

Хоровые излучения по данным спутника THEMIS D (возрастающий тон)

W. Li et al., Geophys. Res. Lett., 38, L14103, 2011

Авроральное километровое излучение по данным спутника FAST

R.A. Treumann et al., Ann. Geophys., 29, 1885, 2011

Сложности космического эксперимента:

- локальный характер измерений
- разделение пространственных и временных зависимостей

<u>Лабораторные исследования:</u>

- управляемые параметры эксперимента
- повторяемость

Схема экспериментального стенда

- т. тиротрон (37.3 ггц, 80 кы, т мс,
- 2. Зеркальная магнитная ловушка
- 3. Импульсный клапан
- 4. p-i-n диод, регистрирующий энергичные электроны (10 180 кэВ)

Длина ловушки ~ 25 см, Макс. магнитное поле 4.3 Тл

- 5,6. Приемные антенны СВЧ излучения
- 7. Диамагнитный зонд
- 8. Ленгмюровский зонд

Особенности развития циклотронных неустойчивостей плазмы на разных стадиях ЭЦР разряда

$$f_{ce0} = f_{ce}(z_{центр})$$

Циклотронная неустойчивость разреженной плазмы на начальной стадии ЭЦР разряда

2 режима развития неустойчивости при постоянно действующей накачке энергии в горячую анизотропную фракцию электронов

Циклотронная неустойчивость разреженной плазмы на начальной стадии ЭЦР разряда

$$f_{min} \ge f_{ce0}$$
$$f_{min} \propto f_{ce0}$$

$$N_e << N_h$$
 $E_h \sim 100-400 \ кэВ$

Оценка характерной энергии резонансных электронов

Функция распределения электронов по скоростям (с конусом потерь) совместно с кривой электронно-циклотронного резонанса.

Melrose D.B., Dulk G.A., The Astrophysical Journal. 1982. Vol. 259. P. 844

$$\begin{cases} \omega - k_{\parallel} v_{\parallel} - \omega_{ce} \sqrt{1 - v^{2} / c^{2}} = 0, \\ v_{\perp} / v = \sqrt{B_{\min} / B_{\max}} \end{cases}$$

$$K = mc^{2}(\gamma - 1) = mc^{2}(\omega / \omega_{ce} - 1)$$

$$\omega_{\rm max}/\omega_{ce}\sim 1.6$$

На начальной стадии разряда электроны ускорены до <u>300 кэВ</u>

Балансные уравнения динамики двухуровневого мазера

$$\begin{cases} \frac{dN}{dt} = \underline{J} - \kappa NE, & h \approx \kappa T_h \\ \frac{dE}{dt} = (\gamma - \delta)E, & \gamma = hN. \end{cases}$$

E – плотность энергии э/м излучения N – "инверсия" (быстрые электроны)

Беспалов П. А., Трахтенгерц В.Ю., 1986

Пример квазипериодического режима генерации

условие генерации

$$\langle \gamma \rangle > \langle \delta \rangle$$

Характерные режимы циклотронной неустойчивости на начальной стадии ЭЦР разряда

Характерные режимы циклотронной неустойчивости на начальной стадии ЭЦР разряда

$$\begin{cases} \frac{dN}{dt} = \underline{J} - \kappa NE, & h \approx \kappa T_h \\ \frac{dE}{dt} = (\gamma - \delta)E, & \gamma = hN. \end{cases}$$

- Число вспышек в наблюдаемой серии до выхода в режим стационарной генерации определяло нормированную интенсивность источника частиц
- Положение «тихого» участка на оси времени определяло время изменения источника частиц $t_{\it I}$
- Момент срыва стационарной генерации определял время «выключения» усиления t_h

Спасибо за внимание!